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Resonant flow of a stratified fluid over topography 
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The flow of a stratified fluid over topography is considered in the long-wavelength 
weakly nonlinear limit for the case when the flow is near resonance; that is, the basic 
flow speed is close to a linear long-wave phase speed for one of the long-wave modes. 
It is shown that the amplitude of this mode is governed by a forced Korteweg-de 
Vries equation. This equation is discussed both analytically and numerically for a 
variety of different cases, covering subcritical and supercritical flow, resonant or 
non-resonant, and for localized forcing that has either the same, or opposite, polarity 
to the solitary waves that would exist in the absence of forcing. In  many cases a 
significant upstream disturbance is generated which consists of a train of solitary 
waves. The usefulness of internal hydraulic theory in interpreting the results is also 
demonstrated. 

1. Introduction 
The flow of a stratified fluid over localized topography has been the subject of 

many theoretical and experimental studies. Most theoretical studies have been 
confined either to linearized theory, or to steady flow, for the two-dimensional flow 
of an inviscid incompressible fluid. Even so, these theories have provided useful 
models for such atmospheric phenomena as the generation of lee waves behind a 
mountain range, or for such oceanic phenomena as tidal flows over sills. Useful 
summaries and critiques of these classical theories have been given by McIntyre 
(1972) and Baines (1977). Most of the earlier studies were concerned with a 
description of the downstream stationary lee-wave field, and in this respect have been 
moderately successful. However, one of the more controversial issues has been the 
question of upstream influence; that is, to what extent do disturbances, generated 
in the vicinity of the topography by transient and nonlinear processes, propagate 
upstream and ultimately alter the initial upstream state of the fluid. McIntyre 
(1972), in extending earlier simpler theories of Benjamin (1970) and Keady (1971), 
performed an expansion with the ratio of the height of the topography to the total 
fluid depth as the small parameter and showed that the only significant upstream 
disturbances were weak second-order long-wave motions generated by nonlinear 
interactions in the lee-wave tails. However, Baines (1977, 1979), in a series of 
experiments with the flow of a continuously stratified fluid over an obstacle, found 
upstream disturbances that were first-order in the obstacle height, propagated with 
a long-wave speed and were generated by nonlinear processes over the obstacle. With 
particular pertinence to the theory developed in this paper, Baines observed that 
these upstream disturbances were very strong when the flow was near a resonance. 
Here a resonance is defined to mean a coincidence between the basic flow speed and 
one of the free long-wave speeds, with the consequence that in linearized theory the 
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corresponding long wave cannot propagate away from the obstacle. In hydraulic 
terminology the flow is said to be critical. In some later experiments with a two-layer 
fluid, Baines (1984) confirmed these findings and, in particular, showed that near 
resonance the main features of interest are nonlinear in character. Furthermore, 
Baines demonstrated the utility of internal hydraulic theory in describing his 
experimental results, and it should be noted that the upstream disturbances often 
had the character of undular bores. 

Motivated by these results, we propose in this paper to present a theoretical study 
of the flow of a stratified fluid over localized topography for the case when the flow 
is near resonance. Since we anticipate that nonlinear long waves will form an essential 
feature of the description of resonant, or near-resonant, flow, we assume from the 
outset that the topography, although localized, has a long lengthscale relative to the 
total fluid depth, and construct our theory accordingly. In $2 we present the 
equations of motion for the two-dimensional flow of an inviscid incompressible fluid 
over localized topography, and construct the non-resonant theory. This reduces at 
leading order to linear long-wave theory. Then in $3 we consider the resonant case 
and show that the flow can be described by a forced Korteweg-de Vries (KdV) 
equation. Similar equations have recently been derived by Patoine 6 Warn (1982) 
and Malanotte-Rizzoli (1984) to describe the resonant forcing of Rossby waves by 
topography, and by Akylas (1984), Cole (1985) and Lee (1985) to describe the 
resonant forcing of water waves by a moving pressure distribution or bottom 
topography. With hindsight, it is not surprising that a forced KdV equation is the 
outcome of our analysis for the resonant case. Near resonance, a single mode 
dominates, and it is well known that free nonlinear long waves for this mode will be 
described by a free KdV equation (see e.g. the review by Grimshaw 1983). The 
presence of topographic forcing in effect supplies a forcing term to this equation. 

In  $4 we present some preliminary discussion and analysis of the forced KdV 
equation, which in scaled, non-dimensional form is given by (4.2a). Not surprisingly, 
in view of the results of Baines (1984), we find the hydraulic approximation, in which 
the dispersive term in the forced KdV equation is omitted, to be of great utility in 
our analysis provided that dispersion is invoked in the appropriate places to resolve 
shocks. Then in $$5 and 6 we present some numerical solutions of the forced KdV 
equation which, in total, give a comprehensive description of both the resonant and 
non-resonant cases for both positive and negative forcing. In  $7 we summarize our 
results. Finally, in the Appendix we show briefly how the theory should be modified 
for the case when the total fluid depth is comparable to the horizontal lengthscale 
of the topography, but the stratification is effectively confined to a layer of small 
vertical extent. 

2. Formulation 
We shall consider the two-dimensional flow of an inviscid incompressible fluid. The 

coordinate system is sketched in figure 1. Throughout we shall use non-dimensional 
variables based on a lengthscale h,, which is a typical vertical dimension of the 
waveguide, a timescale NT1, where N ,  is a typical value of the Brunt-VaisalB 
frequency, and a pressure scale p, gh,, where p1 is a typical value of the density. These 
scales define the parameter B = h, q g - l ,  which is small in the Boussinesq 
approximation. We shall assume that the basic state has a constant horizontal 
velocity of magnitude V from left to right, a density p,(z) and a pressure p,(z), where 
poz = -po. The BrunGViiisiila frequency N ( z )  is defined by 

P P O P  = - P o z *  
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FIQIJRE 1. The coordinate system. 

We shall find it convenient to introduce the vertical particle displacement 5, so that 
the density is given by ~ ~ ( 2 - 5 ) .  Then the equations of motion are 

u,+w, = 0, (2 .24  

where 
d a  a ' a  
-=-+(v+u)-+w--. 
dt at ax aZ 

(2.2b) 

(2.2c) 

(2 .24  

(2.2e) 

Here u, w are the velocity components relative to the basic flow, and pq is the pressure 
relative to the basic state. 

The bottom topography is given by 

z = af(X, T), (2.3a) 

where X =  EX, T =  et. (2.3b) 

Here a is a small parameter measuring the amplitude of the topography, and e is a 
second small parameter such that e-l measures the horizontal lengthscale of the 
topography, which by hypothesis is to be much greater than the vertical dimension 
of the waveguide. Hence f depends on the slow space variable X. We shall also 
suppose that the topography is introduced slowly so that f also depends on the slow 
time variable T, and f ( X ,  0) = 0. A t  large times the topography attains its steady 
value g(X), and hence we assume that 

f ( X ,  T) - g(X) as T+ 00. (2.4) 

We shall also assume that at all times the topography is localized, and f(X, T) + O  
as 1 XI + co. The bottom boundary condition is then 

C = af at z = af. (2.5) 
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We shall assume that the upper boundary is free and located a t  z = h + 7, where h 
is a constant and 7 is the free-surface displacement. The top boundary conditions are 
then 

[ = r  a t z = h + r ,  ( 2 . 6 ~ )  

p , (h+y)+Pq  = po(h)  at z = h + r .  (2.6b) 

If the upper boundary is rigid (2.6a, b )  are replaced by [ = 0 on z = h. The 
modifications necessary in the subsequent analysis to deal with this case are left to 
the reader. To complete the problem specification we shall assume that the pertur- 
bation variables fs, q and u are all zero at  t = 0. 

Since the forcing function f is O ( a ) ,  we shall initially suppose that the response is 
also O(a). It will be shown later that this is valid only in the non-resonant cases, and 
at  resonance a different scaling is required. We put 

)-I [ =  aElo(X,T;z)+a2[1+ ... 

q = aqo(X,  T ;  Z) + a2q1 + . . . , 
u = au0(X, T; Z) +a2u1 + . . . . 

Substitution into (2.2~-e),  (2.5) and (2.6a, b ) ,  and neglect of terms that are relatively 
O(a) or O(e2), leads to the equations 

uox +woz = 0, ( 2 . 8 ~ )  

(2 .8b)  

q o z + P o m o  = 0, ( 2 . 8 ~ )  

PO(4 j@i DUO + qox = 0) 

where 

The boundary conditions are 

C0 =f at z = 0, 

(2 .8d)  

(2.8e) 

( 2 . 9 ~ )  

poco = ,dqo at z = h. (2.9b) 

In order to solve (2.8a-e) and (2.9a, b )  we introduce the normal modes #,(z), 
s = 0, 1 ,2 ,  . . . . They are defined by the eigenvalue problem 

4, = O  a t z = O ,  

at z = h. 4, = /3c;$,, 

( 2 . 1 0 ~ )  

(2.10b) 

(2.104 

Here cS2 is the eigenvalue, where c, is the long-wave phase speed relative to a basic 
state a t  rest. The modes satisfy the orthogonality condition 

r h  
(2.11) 
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The modes form a complete set, and hence we put 
m 

[O = T ,  $8(')7 

0 

From the orthogonality condition we deduce that 

( 2 . 1 2 ~ )  

(2.12b) 

(2.12c) 

(2.13) 

with similar expressions for B, and E,. Substitution into (2.8u-e) and (2.9u, b) then 
shows that 

B, = A,+F,, (2.144 

(2.14b) 

(2 .14~)  

where I ,  4 = Po c: A,(O)f(X, TI. (2.14d) 

Here, sincef vanishes at T = 0, 4(X, 0) = 0, and from (2.4) 

&(X,T) - G,(X) asT-too, ( 2 . 1 5 ~ )  

The initial conditions for (2.14u-c) are that A,, B, and E, all vanish at  T = 0. 

solution can be obtained by standard methods. We find that 
Equation (2 .14~)  is the inhomogeneous one-dimensional wave equation whose 

A, = -- a [ c8 JoTdT' {FJX-  c;(T- T'), T') - 4 ( X +  c;(T- T'), T'))] , ( 2 . 1 6 ~ )  ax Z 
where c$ = cs+ v. (2.16b) 

We are concerned here with the solution as T - t a .  Using (2.15u), and assuming the 
non-resonant case, c, + V ,  we find that 

A, N -- c;- " v 2  G , ( X ) + ~ G * ( x - c : T ) + ~ , ( X + c ; ~  as T - P G O .  (2.17) 

If the topography is switched on a t  T = 0 so that F, = G J X )  for 0 < T < 00, then 
(2.17) is the exact solution of (2.14~).  The solution (2.17) consists of a stationary 
response proportional to G,(X),  together with freely propagating long waves. Those 
waves with speed C; propagate downstream, while those waves with speed c; 
propagate downstream if c, < V ,  but propagate upstream if c, > V .  The former 
case corresponds to supercritical flow, and the latter case to subcritical flow (with 
respect to the 8th mode). On a long timescale, T - a-l, the freely propagating waves 
will be affected by nonlinearity and dispersion, and will evolve, either into a finite 
number of solitary waves, or into an oscillatory wavetrain, both being solutions of 
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a free KdV equation. We shall not develop this analysis here, as this process occurs 
at large distances from the topography, where 1x1 - a-l. The appropriate KdV 
equation has been derived by many authors (see e.g. Grimshaw 1983), and the 
analysis describing the transition from a free linear long wave to a solution of the 
KdV equation will parallel the corresponding discussion for surface gravity waves 
given by Hammack & Segur (1978) and Miles (1978). 

However, for the resonant case, c, = V (c; = 0) ,  when the flow is critical with 
respect to the sth mode, we find that 

(2.18) 

The first term in this expression shows that A, grows linearly with time as T+m. 
Hence the expansion (2.7) is secular for large times, and a different scaling is required. 
This is the main subject of this paper and is taken up in $3. In  particular, it will be 
shown that (2.18) is valid only for times T < a-h. 

3. The resonant case; c, x V 
We shall now suppose that the nth mode is resonant, and c, % V .  At resonance, 

we anticipate that the forcing of amplitude a will achieve a balance, inter alia, with 
the leading-order quadratic nonlinear terms. Hence we expect the response to scale 
with a:. We shall also require a balance between nonlinearity and dispersion, and for 
a KdV system this requires s2 = a+. Hence we put 

where 

y = aiA(X, 7 )  $, ( z )  + a{, + . . . , 
q = ahp, c i  A ( X ,  7 )  $,,(z) + aq, + . . . 
u = 

7 = aiT 

( 3 . 1 ~ )  

(3.lb) 

V = c,+atA. ( 3 . 1 ~ )  

Here A is a detuning parameter, and we recall that X and T are defined by (2.3b). 
7 is a long time variable, and (3.1 a )  is a far-field or outer expansion which is required 
to match with the inner expansion (2.7), whose leading-order terms are described by 
(2.12a-c), (2.17) and (2.18). 

The leading order terms in ( 3 . 1 ~ )  satisfy (2.8a&), the boundary condition (2.9b) 
and the homogeneous form of the boundary condition ( 2 . 9 ~ )  (i.e. replace f by zero). 
On substituting ( 3 . 1 ~ )  into (2.2a-4, (2.5) and (2.6a, b) ,  we obtain 
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where 
~a a 
I)T a7 ax- - = - + A -  

Here we note that D/DT is defined by (2.8e) with V replaced by c,. The solution 
of these equations is obtained by the same procedure described in $2 (compare 
(2.12a-c) and (2.13)). Thus we put 

where 

with similar expressions for q1 and ul. We find that 

(3.34 

(3.3b) 

(3.44 

where 

The solution of ( 3 . 4 ~ )  is analogous to the solution (2.16~)  (or (2.17) and (2.18)) of 
(2.14~). Thus we find that 

or 
A,, = $, T M , X ( X ;  7 )  - s M n ( X ;  7 )  - M , ( X -  2c, T; 7 ) )  - s G , ( X )  - a,(X- 2c, T)}. 

(3.5b) 

Here we note that c,f are defined by (2.16b) with V replaced by c,. No other free 
long-wave terms have been included in (3.5a, b) in anticipation of the matching 
requirements described below. To avoid a secularity in Anl, we must clearly put 
M ,  = 0, which yields the amplitude equation 

( 3 . 6 ~ )  

(3.6b) 

1 

Cn 
--(A,+AA,) +PAAX +hAxx.y + p , x ( X )  = 0, 

A 
where 21, /I = 3 J Po c i  $ i 2  dz, 

0 

Ph 

(3 .6~)  

Discussion of ( 3 . 6 ~ )  will be taken up in the next three sections. 
It remains to be shown that the far-field expansion ( 3 . 1 ~ )  matches with the inner 

expansion (2.7). The matching conditions are obtained by substituting (3.1 b) into 
(3.1 a) and expanding in powers of d, keeping X and T fixed. We find that 
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Here ( 3 . 7 ~ )  is deduced from the absence of any a4 term in (2.7), and (3.7b) then 
follows from ( 3 . 6 ~ ) .  Comparison with (2.18) as T+co shows that matching is 
achieved with the nth mode in the expansion (2.7). Also, using (3.7a), it follows that 
M,(X;O)  = G,(X) for s + n, and then ( 3 . 5 ~ )  matches with (2.17). Note that the free 
long-wave terms in (3.5a, b) are precisely those required by the matching procedure. 

4. Discussion ; analytic approximations for positive forcing 
In  this and the next two sections we shall discuss analytical and numerical 

solutions of the amplitude equation (3.6a), which can be recognized as a forced KdV 
equation, subject to the initial conditions ( 3 . 7 ~ ) .  First, let us rescale ( 3 . 6 ~ )  by putting 

The result is 

( 4 . 2 ~ )  

A*@, 0) = 0. (4.2b) 

Henceforth we shall omit the * in our discussion of (4.2a, b). Further, we shall 
consider only localized forcing functions G ( X ) ,  such that G+O as X+ f 00. The 
forcing function will be characterized by two parameters Go and 5, where we put 

G ( X )  = G , G ( X ) ,  (4.3) 

where X = EX. Here G'(X) 2 0 for all X', has a maximum value of 1 at X' = 0, and 
G + O  as X+ f co. Thus Go is the maximum or minimum value of G according as 
Go is positive or negative. The positive parameter E measures the lengthscale of the 
forcing, i.e. 5-l is the half-width of the forcing. Equations (4.2a, b) were integrated 
numerically using the pseudospectral method of Fornberg & Whitham (1978). The 
forcing functions used were either 

or 

G ( X ' )  = sech2 X ,  

G(X) = exp(-X2).  

(4.4a) 

(4.4b) 

The results are shown in figures 4-13 and tables 1 and 2. These are discussed in detail 
in $5 for Go > 0 and again in $6 for Go < 0. For computational convenience, in the 
numerical solutions the forcing function was centred at  X = 85. First, however, we 
shall present in this section some analytic approximate solutions to (4.2a, b) which 
are useful in interpreting the numerical solutions. These analytic approximations are 
not confined to the specific forcing functions (4.4a, b), and indicate that the response 
to the forcing functions (4.4a, b) is representative of the response to a wide class of 
forcing functions with similar shapes. In this section we consider the case Go > 0, 
which we call positive forcing. Because of the scaling (4. l),  positive forcing corresponds 
to the case when the topography, and the solitary waves (see (4.7a, b) below) produced 
in the response to the forcing, have the same polarity. 

For localized forcing we may assume that A+O as X+ f 00, for all T >, 0. It then 
follows from (4.2a, b) that 

a) 

A(X,T)dX = 0. 
J-a) 

(4.5) 
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Indeed, interpreting the integral on the left-hand side of (4.5) as the mass, it is readily 
shown from ( 4 . 2 ~ )  that the mass is a constant, and then (4.2b) shows that the mass 
is zero. If we now define a potential B so that A = B,, where, using (4.5), we may 
assume that B+O is X +  f 00, then it follows from ( 4 . 2 ~ )  that 

03 03 

B ( X , 7 ) d X +  J-, 3A2(X, 7 )  dX+ G ( X )  dX = 0. (4.6) 
a7 

Since the last two integrals in (4.6) are intrinsically positive, it follows that the first 
term cannot be zero, and hence the solution of (4.2a, b) is never stationary (i.e. 
independent of 7 ) .  This, of course, does not preclude the possibility of localized 
stationary solutions with non-zero mass, or of non-local stationary solutions (i.e. A 
approaches a non-zero constant as X+ f a). 

In  the absence of any forcing (i.e. G ( X )  = 0), ( 4 . 2 ~ )  has the well-known solitary-wave 
solutions 

A = a sech2 1(X-WT),  (4 .74 

where A - w  = 2~ = 412. (4.7 b) 

These are always waves of elevation (a > 0), with speeds w < A. More generally, in 
the absence of forcing, ( 4 . 2 ~ )  has the periodic cnoidal wavetrain solution 

where 

A = a{b(m)+cn2 y k ( X - v r ) } + d ,  ( 4 . 8 ~ )  

l--m E(m) 
b(m) = 

m mK(m)’ 

m mK(m) I ’ 2-m 3E(m) 
A - ~ = 6 d + 2 ~  

(4.8b) 

( 4 . 8 ~ )  

a = 2mk2y2, (4.8d) 

y7t = K(m). (4.8e) 

Here cn is the Jacobian elliptic function of modulus m, while K(m) and E(m) are the 
complete elliptic integrals of the first and second kind respectively; the mean value 
of A over one period is d ;  the period has been defined so that the wavelength is 2x/k. 
As m+ 1, cn2 ( )+sech2 ( ), b(m)+O, y+ 00 and k-+O with 1 = ky remaining finite; 
putting d = 0, we see that ( 4 . 8 ~ )  then reduces to the solitary-wave solution (4.7a, 
b). As m+O, b+cn2 ( ) + C O S 2 (  ), y+t  and a-+O with a/m+tk2 and w + A - 6 d + k 2 ;  
in this limit ( 4 . 8 ~ )  reduces to a sinusoidal wave train. We shall find that both these 
solutions ( 4 . 7 ~ )  and ( 4 . 8 ~ )  have a role to play in constructing analytical 
approximations. 

A number of authors have recently discussed the forced KdV equation, both 
analytically and numerically. Patoine & Warn (1982), Warn & Brasnett (1983) and 
Malanotte-Rizzoli (1984) have all derived an equation of the form ( 4 . 2 ~ )  to describe 
the resonant forcing of Rossby waves by topography. Both Patoine & Warn (1982) 
and Malanotte-Rizzoli (1 984) have discussed the existence of localized stationary 
solutions, and demonstrated the possibility of multiple solutions. It can be inferred 
from their results that localized stationary solutions exist for positive forcing 
(Go > 0) provided I A1 is sufficiently large; for negative forcing (Go < 0) localized 
stationary solutions exist for all values of I A I. However, our results indicate that 
these localized stationary solutions may not necessarily be realized, at least for the 
initial condition (4.2b), and, in any event, describe only a portion of the total 
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solution. Warn & Brasnett (1983) extend the analysis of Patoine & Warn (1982) to 
include the effects of linear damping. Patoine & Warn and Warn & Brasnett also 
discuss the case of solitary-wave capture by the forcing, i.e. the initial condition 
( 4 . 2 ~ )  is replaced by a condition that allows a free solitary wave ( 4 . 7 ~ )  to propagate 
towards the localized forcing. Both Patoine & Warn and Malanotte-Rizzoli present 
some numerical solutions, the former for A < 0, the latter for A = 0 and both for 
negative forcing. A more comprehensive set of numerical solutions were obtained by 
Akylas (1984) and Cole (1985) for positive forcing, with, in our notation, G given by 
a &function. Both these authors derived the forced KdV equation for the resonant 
forcing of water waves; Akylas considered a moving pressure distribution and Cole 
considered flow over bottom topography. Lee (1985) also derived a forced KdV 
equation for water waves due to either method of forcing, and made a detailed 
comparison between numerical solutions and experimental results for flow over a 
bottom bump. We shall discuss these numerical results later in §$5 and 6 in the 
context of our numerical results. 

Various analytic approximations are possible. One approach is to search for 
localized stationary solutions ; some aspects of this have been discussed above, and 
will be taken up again below in 84.2. Another possibility is to assume that Go 6 1, 
and then seek a solution of (4.2a, b) in the form of an expansion in powers of Go. This 
has been described in some detail by Patoine t Warn (1982). At the lowest order the 
equation to be solved is the linearized version of (4.2a), and the problem reduces to 
a simplified version of the flow of a stratified fluid over topography; for a compre- 
hensive account of this latter problem, carried to terms of O(Gi), see McIntyre (1972). 
In  the present case, the solution to O(Gi) obtained by Patoine & Warn can be 
summarized as follows. For A > 0 (i.e. supercritical flow) the solution as T+OO 

consists entirely of a localized stationary solution over the forcing region, together 
with a decaying oscillatory wavetrain which propagates downstream and is confined 
to the region X > AT. For A < 0 (i.e. subcritical flow), the solution as T+ GO consists 
of a localized stationary solution over the forcing region, together with a stationary, 
downstream lee wavetrain occupying the region 0 < X < -247. To O(G,) the 
wavetrain is described by ( 4 . 8 ~ )  with d = 0, v = 0 and wavenumber k = ( - A ) + ;  the 
corresponding group velocity is -24, and defines the downstream extent of the 
wavetrain whose amplitude a, is proportional to Go A - l .  In addition there are O(Gi) 
upstream and downstream disturbances ; the upstream disturbance has a mean 
height of -4 laOl 2A-1 (> 0) and occupies the region AT < X < 0, while the down- 
stream disturbance has a mean height of 2 1 a, I 2A - ( < 0) and occupies the region 
0 < X < 247. However, these approximate solutions would seem to be of limited 
value in interpreting our numerical results, as they are valid only for Go 4 Id 1 2 .  
Indeed, near resonance, where I A I 4 Go, our numerical results show that the 
solution has a very different character. 

We shall base our analytic approximations upon the non-dispersive, or hydraulic, 
approximation in which the dispersive term (i.e. A,,,) in ( 4 . 2 ~ )  is omitted. The 
primary motivation for this approach arises from examining our numerical results, 
but we note that Baines (1984), in an experimental and theoretical study of the flow 
of a two-layer fluid over topography, also found that the hydraulic approximation 
was of great utility in interpreting his experimental results. The hydraulic approxi- 
mation will be discussed in $4.1 below. It is particularly useful in the forcing region, 
and so in $4.2 we discuss stationary solutions without necessarily invoking the 
hydraulic approximation. In  the regions upstream and downstream from the forcing 
region the hydraulic approximation may lead to the prediction of shock formation. 
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However, the occurrence of shocks represents a failure of the hydraulic approximation, 
and hence they must be replaced by an appropriate solution of the full equation 
( 4 . 2 ~ ) .  We find that these shocks must be replaced either by an upstream train of 
solitary waves, discussed in $4.3, or by a modulated cnoidal wave train, discussed 
in $4.4. Then in $$5 and 6 we shall present our numerical results and relate them 
to our analytic approximations. 

4.1. Hydraulic approximation 
This is formally valid for wide obstacles, in the limit E+O. Hence, if we assume that 
A = A ( X ,  77,  where we recall from (4.3) that X = EX and we put T' = 67, then, with 
the omission of the dispersive term, which is O(E2), (4.2a, b) become 

- A ,  -dAr+6AAx,+  G x , ( X )  = 0, (4 .94  

A(X',O) = 0. (4.9b) 

These equations are readily solved by the method of characteristics. Thus we replace 
(4.9a, b) with 

-- dT/ - (4 .10~)  

(4.10b) 

where X' = Xi, A = 0 a t  T' = 0. (4 .10~)  

Here Xi is the initial position of the characteristic. The solution of (4.10u-c) is given 

6A = A T signd{d2+12(G(Xi)-G(X'))}f (4.11) 

Substitution of (4.11) into (4 .10~)  then gives X' as a function of Xi and 7 ' ;  

elimination of Xi leads to the required solution. Here the upper sign in (4.11) is 
chosen until the characteristic reaches a turning point, where d = 6A, after which 
the lower sign is chosen. When d = 0 the upper sign is chosen in X' > 0 and the lower 
sign in X' < 0. If characteristics intersect, then a shock must be inserted. Letting 
V' be the shock velocity, it is readily shown from ( 4 . 9 ~ )  that the shock condition is 

V' = d-3(A,+A2), (4.12) 

On constructing the solution by tracing characteristics in the manner described 

4 2  < 12a0, (4.13) 

where we recall that Go( > 0) is the maximum value of Q(X) ; we shall call this the 
resonant case. In this case there exists a critical value of Xk, Xi,,, such that all 
characteristics emanating from Xk where Xi < Xic have a turning point, propagate 
upstream and form an upstream shock ; conversely all characteristics emanating from 
Xi where Xi > Xi,, have no turning points, propagate downstream and form a 
downstream shock. A typical configuration is sketched in figure 2 (a) for a case when 
A > 0; the configuration for A < 0 is similar (note that ( 4 . 9 ~ )  is invariant under the 

by 

where Al,2 are the upstream and downstream values of A adjacent to the shock. 

above, two distinct cases emerge. First, suppose that 
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FIQURE 2. A typical characteristic configuration for the hydraulic approximation of $4.1 when 
A > 0: (a) A2 < 12G,; ( b )  A2 > 12G,,. 

transformation A +  -A, d + - d and X --+ - X). The critical value of X i c  is given 

G(Xi,) = Go-&A2, (4.14) 

where Xic  5 0 according as d >< 0. For d = 0, Xic = 0 and characteristics emanating 
from Xi where Xi 5 0 propagate upstream and downstream respectively. We are 
primarily interested in the asymptotic solution as 7' + 00. In  this limit a stationary 
solution develops over the forcing region terminating in upstream and downstream 
shocks. A typical configuration is sketched in figure 3(a) for a case A > 0 (the 
configuration for A < 0 is similar). The stationary solution is determined by the 
characteristic emanating from X i c ,  whose turning point is reached only as T'+ 00 ; 
it is given by 

6 4  = d-signX'{12(Go-G(X'))}~. (4.15) 

In  hydraulic terminology the solution is determined by the critical condition 6A8 = A 
at the top of the topography. As X + f 00, A , + A ,  where from (4.15), 

6 A ,  = AT (12G0)4, (4.16) 

by 
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FIGURE 3. A typical solution aa T+ GO for the hydraulic approximation of $4.1 when A > 0: 

(a) A* < 12G0; (a) A' > 12G0. 

while the corresponding shock velocities V,  are found from (4.12), with the result 
that 

V,  = 3Af(12G0)i}. (4.17) 

Note that V, 3 0 respectively by virtue of the restriction (4.13), and A, >< 0. As 
A+(12G0)f, A++0,  V++ (12G0)i and remains positive, while A-+4(12G0)i and 
remains positive, V-+O. Conversely, as A + - ( 12G0)!, A+ + -;( 12G0)i and remains 
negative, V+ + O ,  while A- + O ,  V- + - ( 12G0)i and remains negative. 

Next, suppose that 
A2 > 12G0, (4.18) 

which we shall call the non-resonant case. There are now no characteristics with 
turning points. For A > 0 ( < 0) all characteristics propagate downstream 
(upstream), and as 7' + m a localized stationary solution develops over the forcing 
region, given by A , ( X ) ,  where 

6A, = A-signA{A2- 12G(X')}4. (4.19) 

For A 2 0, A, 8 0, and as X + f m, A,+O. However, in order to conserve mass (i.e. 
to satisfy (4.5)) there is a compensating simple wave and shock propagating 
downstream (upstream) for A > 0 (< 0). A typical configuration for the character- 
istics is shown in figure 2(b), and a typical solution is sketched in figure 3 ( b ) .  The 
solution has obvious similarities with the non-resonant solution obtained in $2. As 
7'+ 00 the simple waves and shocks are given by the similarity solutions 

where 

x' C 
6 A - d - 7  forO< 

7 
(4.20 a )  

(4.20b) 
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They have the well-known triangular shape, terminating in a shock, and are negative 
(positive) according as A > 0 (< 0). Note that the integral on the right-hand side of 
(4.20b) is the mass contained in the localized stationary solution (4.19), and is exactly 
balanced by the mass contained in the asymptotic solution (4.20a). 

4.2. Stationary solutions 

In discussing the hydraulic approximation in $4.1, we found that the stationary 
solutions, (4.15) or (4.19), play a significant role in the limit 7-+00. Hence in this 
subsection we shall develop some properties of the stationary solutions A, of (4.2a) 
with the aim of extending the results obtained in $4.1, when E+O, to the whole range 
of E. We seek stationary solutions such that A,  -+ A, as X - t  f 00. Two cases may be 
distinguished; based on the results of the hydraulic approximation, we conjecture 
that either 

(4.21 a) 

or (4.21 b) 

The relations (4.21 a) hold for the resonant case, and (4.21 b) for the non-resonant 
case; in both cases we anticipate that A?) < 0 and AY) > 0 (i = 1,2). In the resonant 
case (4 .21~~)  the stationary solution must be matched to appropriate upstream and 
downstream transient wavetrains; in order that the total mass should be zero (see 
(4.5)) it  is clear that A+ and A- should have opposite signs, and the requirement that 
A+ < 0 < A- is based on the hydraulic approximation and the results obtained 
below. In the hydraulic approximation [-to we have shown that AY) = +(12G,,)i 
(i = 1,2), and A, are given by (4.16) with A ,  given by (4.15) in the resonant case, 
and by (4.19) in the non-resonant case. 

A+ $: A_, A+ < 0 < A- 

A+ = A- = 0 

for A?) < A < AT) ,  

for A < A?) and A > A'$). 

With no 7-dependence, (4.2a) may be integrated once to give 

-AA, +3Ai+A,,,+ G = -3A+ A_,  (4.22a) 

where d = 3(A++A-)  if A+ =t='A-. (4.22b) 

In the resonant case (4.21 a) the following two integral identities may be derived from 
(4.22a, b). 

(A, -A+)(A, -A-)dX+ GdX= 0, (4.23a) 

1(A+-A-)3-j-m A,,GdX = 0.  (4.23b) 

The hypothesis that A+ < A, < A- is consistent with both these identities, and is 
satisfied in the hydraulic approximation 5-t 0. In the non-resonant case (4.21 b) the 
corresponding integral identities are 

m 03 

35_m I, 
Q) 

- A  [" A , d X + 3  lm A;dX+ [" GdX = 0, (4 .24~)  
J -m J -Q) J-m 

Q) 

A,, GdX = 0 .  (4.24 b) 

The hypothesis that A ,  3 0 according as A > A?) > 0 or A < A!? < 0 is consistent 
with both these identities and is satisfied in the hydraulic approximation [+O. 

Both Malanotte-Rizzoli (1984) and Patoine & Warn (1982) have discussed localized 
stationary solutions (i.e. (4.21b)) for the particular case when G ( X )  is given by 

J-, 
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Go sech4 EX; their results are consistent with the conjecture (4.21 b), but indicate that 
there may be multiple solutions for A,. To test these conjectures further, we consider 
the limit E-+ co, and put 

G = G,S(X), (4.25) 

where G, > 0. In  order to provide a comparison with the hydraulic approximation, 
we note that (4.3) reduces to (4.25) in the limit E+ co if we put 

Go = G, [K-', (4.26a) 

where 
03 

K = [-, G ( X )  dX'. (4.263) 

For the specific choices (4.4a, b), K = 2, xf respectively. In  the resonant case 
( 4 . 2 1 ~ )  the solution of (4.22a) with G given by (4.25) is 

A, = A- for X < 0, (4.27a) 

A, = A++2Z2 sech2 Z(X+ X,) (4.27 b) 

where 422 = 3(A--A+). (4 .27~)  

The solution in X > 0 (4.27 b) is a stationary solitary wave (see (4.7a, b)), and we note 
that there is no corresponding solitary wave in X < 0. To complete the solution, we 
must use the matching conditions at X = 0, 

for X > 0, 

[A,]? = 0, [A,& = -Gl, (4.28) 

(4.29a) 

(A--A+)' = q. (4.293) 

Note that (4.29b) can be deduced directly from (4.238) using (4.28), and that only 
the positive solution for X, in (4.29a) is permissible. The two equations (4.223) and 
(4.293) determine A,, and we find that 

and we find that 3 wch2 ZX, = 2(A- - A+) 

(4.30 a)  

(4.30 b) 

In the non-resonant case the solution is 

A, = 2Z2 sech2 Z(Xf X,) for X 8 0, (4.31 a) 

where 412 = A .  (4.31 b) 

The matching conditions at X = 0 imply that 

sechZ (ZX,) tanh ZX, = G, d-t.  (4.32) 

The solution exists only for A > 0 and for G, A-3 < 213% We deduce that 

A!,? = 3(+G1)i, A?)+ - 00. (4.33) 

Note that there are two allowed solutions for X, when solving (4.32)) and hence two 
solutions for A,. The two solutions are such that tanhZX, 8 3 3  respectively; 
considering the limit A + co, it is clear that we should select the larger solution. For 
A < - 3@ there is no stationary solution of either kind; our numerical results and 
some analysis for Go < 1 by Patoine & Warn (1982) suggest that when A is sufficiently 
negative there is a quasistationary solution consisting of a downstream stationary 

15 FLM 169 
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cnoidal wavetrain (i.e. (4.8a-e) with v = 0) and an upstream constant, A_;  both 
upstream and downstream components must be matched to appropriate transient 
wavetrains. 

4.3. Solitary wavetrain 

In  our discussion of stationary solutions in $4.2 we have shown that in the resonant 
case (4.21a) a mean level A- > 0 is established in the upstream region where 
X < X -  < 0, where, for simplicity, we shall assume that G is effectively zero in 
X < X-. In the hydraulic approximation ($4.1) the mean level A- is terminated by 
a shock travelling upstream with a velocity V- (see (4.16) and (4.17)). However, 
shocks are not valid solutions of the free KdV equation (i.e. ( 4 . 2 ~ )  with the forcing 
term omitted) ; indeed, the hypotheses that lead to the hydraulic approximation fail 
in the vicinity of the shock. Instead, motivated by our numerical results, we propose 
that the mean level A- generates a train of identical solitary waves propagating 
upstream. 

It is well known that an initial positive disturbance for the free KdV equation in 
the infinite interval - 00 < X < co will generate a finite number of amplitude-ordered 
solitary waves, together with a decaying oscillatory wavetrain (see e.g. Whitham 
1974). The present situation is different in that we are seeking solutions of the free 
KdV equation in the semi-infinite interval - co < X < X-, with a zero initial 
condition, and a positive disturbance as X+XL We shall view the boundary 
condition at X -  as providing a continual flux of mass and energy, with the 
consequent formation of a series of identical solitary waves, with amplitude a and 
speed v and given by (4.7a, b).  The spacing between the waves is h, and in the limit 
7+ co the number N of solitary waves produced is given by N - -vrh-l. Strictly 
speaking, a train of identical solitary waves is not an exact solution of the free KdV 
equation, and a more accurate representation is a modulated cnoidal wavetrain. This 
is described locally by (4.8~-e) with the parameters a, m and d varying slowly with 
X and 7. The general theory has been developed by Whitham (1965,1974) and applied 
by one of us (Smyth 1986) to the present problem (see also $4.4). It is found that 
the modulus m varies in the range 0 < m, < m < 1 ,  where m-t 1 at the upstream 
front of the wavetrain, and m+m, in the forcing region (i.e. as X + X - ) .  Thus the 
leading waves are closely approximated by a train of solitary waves. Furthermore, 
for much of the range of d where this solution applies, Smyth (1986) also finds that 
m, is sufficiently close to 1 for the whole wavetrain to be adequately described as a 
solitary wavetrain. Hence we shall proceed on this basis here. 

In  order to apply the boundary condition as X+ X- we observe that the following 
conservation laws for mass and energy can be derived from the KdV equation (4.2a) 

XO 2s AdX={-dA+3A2+Axx+C)xo, 
a7 --m 

( 4 . 3 4 ~ )  
._ 

xo xo 
+A2dX = { -~AA2+2A3+AAxx-~A~}xo+  A G x d X .  (4.343) 

a7 -, I-, 
These expressions are valid for arbitrary fixed values of X,. Here we choose X, to 
lie in the region where the solution is stationary, i.e. A = A,(X) and is given by 
(4.22a, b). We find that (4.34a, b )  become 

2 I XO A dX = - AA-+ 3AZ, 

a7 
( 4 . 3 5 ~ )  

(4.35 b)  
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The mass and energy carried by a single solitary wave are 2(2a): and 5(2a)l 
respectively. For a train of N solitary waves, where N - -vrh-', the left-hand sides 
of (4.35a, b)  can be evaluated to give 

( 4 . 3 6 ~ )  
V 

--.2(2a): = -dA- +3AZ, 
h 

Recalling the relation (4.7b) between v and a, we find that 

3A-(4A- - d) 
a =  

2(3A--A) ' 

(4.36 b)  

( 4 . 3 7 ~ )  

(4.37 b )  

and h can be found from (4.36a, b). Recalling (4.223), we see that 3A--A > 0 and 
hence a > 0, v < 0 and h > 0, as required for solitary waves. 

In  the hydraulic approximation ($4.1) A- is given by (4.16), and ( 4 . 3 7 ~ )  becomes 

for Id I < ( 12G0)4. (4.38) 

As d + ( 12G0)1, a and h + 00, although, in this limit, the time for the solution to reach 
the asymptotic regime of a solitary wavetrain increases indefinitely, with the 
consequence that formulae such as (4.38) become less useful. As d +- (12G0)k, a+O 
and h- t  0 0 ;  however, we shall show in $4.4 that  for d < -$(12G0)1 the solitary 
wavetrain is replaced by a modulated cnoidal wavetrain. I n  the opposite approxi- 
mation, c+ 00, A- is given by (4.30a), where G, is given by (4.26a, b). We find that 
( 4 . 3 7 ~ )  becomes 

for Id1 < 3(GOK5-')t. (4.39) 

Similar comments to  those made above hold when I d I + 3(G0 Kc-')% We shall find 
that (4.38) and (4.39) together provide a useful approximation to  the amplitude of 
the upstream solitary waves for all values of 6. 

4.4. Modulated cnoidal wavetrain 

I n  our discussion of stationary solutions in $4.2 we have shown that in the resonant 
case (4.21 a) a mean level A, < 0 is established in the downstream region X > X, > 0 
where, for simplicity, we shall assume that G is effectively zero in X > X,. I n  the 
hydraulic approximation ($4.1) the mean level A+ is terminated by a downstream 
shock (see (4.16) and (4.17)). However, since shocks are not valid solutions of the free 
KdV equation, we shall instead terminate the mean level with a modulated cnoidal 
wavetrain. The relevant approximate solution has been described by Gurevich & 
Pitaevskii (1974) and Fornberg & Whitham (1978), based on the modulation theory 
developed by Whitham (1965, 1974). More details relating to  the present application 
are given by Smyth (1986). The modulated wavetrain is described by the cnoidal 
wavetrain (4.8a-e), where the parameters a, rn and d vary slowly with X and 7.  The 
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solution that describes the transition from a mean level A+ < 0 to a zero mean level 
is given by (4.8~-e), where 

X 
for A-2A+ < - < A-l2A+, ( 4 . 4 0 ~ )  

7 { E(m)-(l-m)K(m) 1 7 

2m( 1 - m) K(m) 
A--=2A+ 2-m+ 

a = -2A+m, (4.40 b) 

(4.40 c )  

Ahead of the wavetrain, where X / 7  > A -  12A+, A = 0 and at  this end m+O, a+O, 
d + O  and the wavetrain is approximately sinusoidal. Behind the wavetrain, where 
X / 7  < A-2A+, A = A +  and at  this end m + l ,  a+-2A+, d+A+ and the leading 
wave is approximately a solitary wave of amplitude -2A+. In order that this 
solution lie in the region X > 0, we require that 

2A+ < A.  (4.41) 

In the hydraulic approximation ($4.1) A+ is given by (4.16), and the modulated 
wavetrain occupies the region 

( 4 . 4 2 ~ )  

where -$(12G0)i < A < (12G0)4. (4.423) 

Here the upper limit in (4.423) derives from the condition (4.13) for the resonant case, 
but the lower limit is due to (4.41). In the opposite approximation t+ 00, A+ is given 
by (4.30a), where G, is given by (4.26a, b). The wavetrain now occupies the region 

X 
fA+4(12G0)4 < - < 2(12G0):-A as [ + O ,  

7 

(4.43a) 

where -$(GOKg-l)f < A < 3(GOK[-')i. (4.43 b) 

In (4.43b) the upper limit is due to (4.30b), and the lower limit is due to (4.41). We 
shall find that (4.40a-c), (4.42a, b) and (4.43a, b) together provide a useful 
description of the downstream oscillatory wavetrain for all values of f .  When the 
condition (4.41) is violated, the solution (4.40a-c) is replaced by a stationary cnoidal 
wavetrain with constant modulus m, (< 1) in the region X+ < X < X, 7 and by the 
similarity solution (4.40a, b, c) in the region X, 7 < X < (A- 12A+) 7 ,  and for which 
m, > m > 0. Details of this solution and the determination of m, and X, are given 
by Smyth (1986), who also shows that this solution pertains for 
-(12G0)t < A < -$(12G0)i when [ + O ,  and for -3(G0Kg-l)i < A < -$(GoKt;-')j 
when [+ a. 

It is also possible to use a modulated cnoidal wavetrain to terminate the upstream 
mean level A- > 0 in the region X < X- < 0 instead of the solitary wavetrain 
described in $4.3. The solution is given by (4.8a-e) where now 

X } for A-4A- < - < A +6A-, 
2m( 1 - m) K(m) 

7 E(m)-(l-m)K(m) 7 

(4.44 a) 
a = 2A-m, (4.443) 

(4.44c) 
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Ahead of the wavetrain, X / 7  < A-4A-, A = 0 and a t  this end m+ 1, a+2A-, d+O 
and the leading wave is a solitary wave of amplitude 2A-. Behind the wavetrain, 
X / T  > A+6A-, A = A- and at this end m+O, a+O, d+A-  and the wavetrain is 
approximately sinusoidal. In  order that this solution lie in the region X < 0 we 
require that 

In  the hydraulic approximation ($4.1) A- is given by (4.16), and the modulated 
wavetrain occupies the region 

6A- < - A .  (4.45) 

d 
f A - 9 ( 1 2 G 0 ) ~ < - < 2 A + ( 1 2 G 0 ) ~  7 as[+0, (4.46 a)  

where -(12G0)~ < A < -+(12G0)t. (4.463) 

Here the upper limit in (4.46b) is due to (4.45), but the lower limit derives from the 
condition (4.13) for the resonant case. In  the opposite approximation E+ co, A- is 
given by (4.30a), where Gl is given by (4.26a, b). The wavetrain now occupies the 
region 

(4.474 ~ L I - ~ ( G , K ~ - ~ ) !  <-<2A+3(G0KE-l)f asi$+co, 

where - 3(G0 KE-'); < A < -!(Go K[-')a. (4.47 b )  

In  (4.478) the upper limit is due to (4.45), and the lower limit is due to (4.30b). When 
the condition (4.45) is violated, we shall use the solitary-wavetrain approximation 
of $4.3. However, as we commented there, a more accurate approximation is to use 
the similarity solution (4.44a-c) in the region (A -4AJ 7 < X < X-, and for which 
1 > m > m,. Details of this solution, and the determination of m,, are given by 
Smyth (1986), who also shows that this solution pertains for -+( 12G0)t < A < (12G0)1 
when f + O ,  and for -ij(G0KE-l)! < A < 3(G0KEb1p when &+a. 

X 
7 

5. Discussion; numerical solutions for positive forcing 
In this section we shall discuss the numerical solutions of (4.2a, b) obtained using 

the forcing functions (4.4a, b) with Go > 0. Synthesizing our numerical results with 
the aid of the analytic approximations obtained in $4, we postulate the existence of 
four regimes. 

5.1. Case ( i ) :  A -  < A < A +  
This is the resonant case. Here A are functions of Go and E,  and satisfy the inequality 
A'? < A -  < 0 < A ,  < A?), where A$) are defined in (4.21). In the limit 7+co the 
solution becomes locally stationary in the forcing region, where it is given by A,, and 
we recall from $4.2 that A,+A,  as X+ +co, where A+ < 0 <A-  (see (4 .21~)) .  
Upstream, the mean level A- is matched to a train of solitary waves of uniform 
amplitude. We have discussed these in $4.3, and we recall the approximate 
expressions (4.37a, b) for the solitary waves' amplitude and speed. Downstream, the 
mean level A+ is matched to a modulated cnoidal wavetrain, discussed in $4.4 (see 
( 4 . 4 0 ~ ~ -  c). In the hydraulic approximation E+ 0 our analytic approximations 
obtained in $4 show that A -  z -t(12G0)f and A ,  z (12G0)f (see e.g. (4.42b)). The 
solitary-wave amplitudes are given by (4.38), and the downstream modulated cnoidal 
wavetrain occupies the region given by (4 .42~) .  In  the opposite limit E+co, 
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FIGURE 4. The numerical solution for the forcing function ( 4 . 4 ~ )  with A = 0, Go = 1 and 
6 = 0.3. 

A -  x -k(GoK6-')! and A +  x 3(GoK6-')f (see e.g. (4.43b)), where K is defined by 
(4.263). The solitary wave amplitudes are given by (4.39), and the downstream 
modulated cnoidal wavetrain occupies the region given by ( 4 . 4 3 ~ ) .  

A typical numerical solution is shown in figure 4 for the forcing function ( 4 . 4 ~ )  with 
A = 0, Go = 1 and 6 = 0.3. The general features described above are clearly apparent. 
With A in the range A -  < A < A +  we find that varying Go, 6 or the forcing function 
(4.4a, b)  makes little qualitative difference to our numerical solutions, in agreement 
with the discussion in the previous paragraph. Here A ,  are found from interpreting 
our numerical solutions. For instance, with Go = 1 ,  6 = 0.3 and the forcing function 
(4.2a), we find A -  x - 1.7 and A +  x 3.3, in good agreement with the predictions of 
the hydraulic approximation, A -  x - d 3 ,  A +  x 2 4 3 .  For 6 + 1 the numerical 
solutions obtained with either of the forcing functions (4.4a, b) are quantitatively in 
agreement. This is a consequence of the hydraulic approximation in which the 
stationary solution in the forcing region, and hence A the upstream solitary 
wavetrain and the downstream modulated cnoidal wavetrain, are all functions only 
of Go and A .  For moderate or large values of 6 the numerical solutions are qualitatively 
the same. For f l $  1 the discussion in $4.2 indicates that  the solution is determined 
by the parameters Go K6-l and A .  

I n  table 1 we compare the numerically calculated solitary wave amplitude a and 
the downstream depression A+ with the approximate expressions (4.38) and (4.16) 
respectively, which are valid in the limit < + O .  The numerical solutions are obtained 
for the forcing function ( 4 . 4 ~ )  with A = 0, 6 = 0.3 and a range of values for Go. The 
agreement is good. I n  figure 5 we plot the numerically calculated solitary-wave 
amplitude a and the downstream depression A+ as functions of 6 ,  for the forcing 
function (4.4b) with A = 0 and Go = 1.  Also shown are the approximate expressions 
(4.38) for a and (4.16) for A+ that  hold in the limit 6+0, and the approximate 
expressions (4.39) for a and ( 4 . 3 0 ~ )  for A ,  that hold in the limit 6 - t ~ .  The 
approximations (4.38) and (4.16) derive from the hydraulic approximation and 
predict that both a and A+ are independent of 6;  our numerical results show that 
this is a very good approximation for E > 1.  In  contrast, the approximations (4.39) 
and ( 4 . 3 0 ~ )  derive from the limit (-+a and predict that  both a and A- are 

*I 
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I .2 

0.8 

0.4 

0 

GO a, numerical a, approximate 1 A+ I, numerical IA+I, approximate 

0.5 0.81 0.82 0.400 0.408 
1 .o 1.15 1.15 0.577 0.577 
1.5 1.41 1.41 0.707 0.707 
2.0 1.61 1.63 0.817 0.817 

TABLE 1 .  A comparison between the numerically calculated results for the solitary-wave amplitude 
a and the downstream depression A+, and the approximate expressions that hold as l + O .  The 
numerical results were obtained for the forcing function ( 4 . 4 ~ )  with A = 0 and 6 = 0.3. 

0.6 

0.4 

0.2 

2 4 5-1 0 2 4 5-’ 
FIGURE 5. A comparison between the numerically calculated results (-) as a function of 5 and 
the approximate expressions that hold as l + O  (-----) or as [+a (...): (a) the solitary wave 
amplitude a; (6) the downstream depression A,. The numerical results were obtained for the forcing 
function (4.46) with A = 0 and Go = 1. 

proportional to 6-t; our numerical results show that this is a very good approximation 
for f ;  < 1. Taken together, the two limits c + O  and [-+ co provide good approximate 
expressions for a and A+ over the whole range of f;. Next we turn to the downstream 
wavetrain. Our numerical solutions provide clear evidence that this can be described 
by the modulated cnoidal wavetrain approximation discussed in 54.4. For instance, 
examination of figure 4 shows clear evidence that the crest positions are functions 
of the similarity variable X / T .  In table 2 we compare the numerically calculated 
positions of the ends of this wavetrain with the approximate expressions (4.42a), 
which are valid in the limit f;+O. The numerical solutions are obtained for the forcing 
function (4.4a) with A = 0, 5 = 0.3 and a range of values of ao. There is good 
agreement for the lower limit, where the leading wave is close to a solitary wave and 
clearly defined. The agreement with the upper limit is reasonable, but not so good. 
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a0 Numerical results Approximate results 

0.5 
1 .o 
1.5 
2.0 

0.82 < X / T  < 5.75 
1.16 < X / T  < 7.45 
1.41 < X / T  < 9.44 
1.62 < X / T  < 9.94 

0.82 < X / T  < 4.90 
1.15 < X / T  < 6.93 
1.41 < X / T  < 8.49 
1.63 < X / T  < 9.80 

TABLE 2. A comparison between the numerically calculated results for the ends of the downstream 
wavetrain, and the approximate expressions that hold as 5-0. The numerical results were obtained 
for the forcing function ( 4 . 4 ~ )  with A = 0 and 5 = 0.3. 

However, we note that the numerical results of Fornberg & Whitham (1978) show 
that the modulation theory, described here in Q 4.4, generally underestimates the 
upper limit. 

Next we examine how the comparison between the numerical solutions and the 
analytic approximations fare as a function of A .  I n  figure 6 we plot the numerically 
calculated solitary wave amplitude a and the downstream depression A+ as functions 
of A ,  for the forcing function (4.4b) with Go = 1 and 6 = 0.3. For this value of 6 the 
approximations (4.38) for a, and (4.16) for A+, derived from the hydraulic 
approximation, may be used, and are also shown in figure 6. I n  this same approximation 
A -  x -f(12G0)5 and A +  x (12G0)i. There is good agreement for A+ over the whole 
range of A ,  and reasonably good agreement for a over most of the range A .  The major 
disagreement occurs in the approximation for a as A + A  + . This is due in part to an 
increase in the time taken for the asymptotic regime of an upstream solitary 
wavetrain to  be established with the consequent difficulty of determining the 
amplitude a. A contributing factor is that as A +  A + ,  A++O and the mass flux being 
supplied to the upstream wavetrain also tends to zero (see (4.35a), and use (4.22b)). 
This has the consequence that the hypothesis of a solitary wavetrain as the 
asymptotic regime becomes less useful as d+A+. One of us (Smyth 1986) has 
replaced the solitary-wavetrain approximation with a 'modulated cnoidal wavetrain 
whose modulus m varies from m, just upstream of the forcing region to 1 a t  the 
upstream front of the wavetrain. He h d s  that the amplitude of the leading wave, 
which is closely approximated by a solitary wave, varies with A in a manner that 
is completely consistent with our numerical results for the whole range A -  < A < A + .  
A typical numerical solution when A is just less than A +  is shown in figure 7 for the 
forcing function ( 4 . 4 ~ )  with A = 3, Go = 1 and 6 = 0.3; here A +  x 3.3. 

Finally we compare our numerical and analytical solutions with the numerical 
solutions obtained by Akylas (1984), Cole (1985) and Lee (1985). Both Akylas and 
Cole numerically integrated (4.2a, b )  when G is given by a &function; in our notation 
G, = ($IT or t(i)i for the results of Akylas and Cole respectively. The appropriate 
analytical approximations for A ,  are those that hold in the limit [+ 00, and we find 
that A ,  = 6.86 and A -  = -3.43 for the results of Akylas, while A +  = 1.66 and 
A -  = -0.83 for the results of Cole. Akylas describes results for (in our notation) 
A = 0, 0.45 and -0.91, which thus all fall well within our resonant category 
A -  < A < A + .  I n  general his numerical results conform with the description given 
here. For the three values of A reported by Akylas, our analytical approximations 
for the solitary-wave amplitude (4.39) and the downstream depression ( 4 . 3 0 ~ )  are 
a = 2.29, 2.52 and 1.87 and A+ = -1.14, -1.07 and -1.29 respectively. These 
compare with a = 1.82,2.06 and 1.47 and A+ = -0.98, -0.81 and - 1.10 respectively 
obtained by Akylas. We suspect that  the reason for the discrepancy is that the 



Strati$ed flow over topography 

I :  
I :  

4 -  

45 1 

I :  
I 

I 
I 

I 
f 

/ 
/ 

/ 
/ 

-2  
A -  0 2 

FIQURE 6. A comparison between the numerically calculated results (-) aa a function of A and 
the approximate expressions that hold aa t + O  (---); (a) the solitary wave amplitude a ;  (b)  the 
downstream depression A,. The numerical results were obtained for the forcing function (4.4b) with 
Go = I and 6 = 0.3. 

numerical calculations obtained by Akylas were terminated before the asymptotic 
regime had been completely established. As a further comparison, we obtained a 
numerical solution for the forcing function (4.4b) with A = 0, 6 = 7.0 and Go given 
by (4.26a), and found that our numerically determined solitary wave amplitude and 
downstream depression were a = 2.27 and A+ = - 1.12, in good agreement with our 
analytical approximations. Next, Cole describes results for (in our notation) A = 0.91, 
0.45, 0, -0.45 and -0.91; the first four of these cases fall within our resonant 
category (i), while the last belongs to  our transition category (ii) (see $5.2) .  In  general, 
her numerical results conform with the description given here, but no quantitative 
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X 
FIGURE 7. The numerical solution for the forcing function ( 4 . 4 ~ )  with A = 3, Go = 1 and 

5 = 0.3. 

comparison is possible as she did not report any numerical results for either a or A+. 
Lee (1985) numerically integrated (4.2a, b )  when Q' (see (4.3)) is given by s i n 2 X  for 
0 < X < x, and is zero elsewhere; in our notation he set Go = 0.1 and f ;  = 1.09 (he 
also reported one case with Go = 0.2). In  order to  make some comparison with our 
results, we shall use the hydraulic approximation, for which we find that A +  = 1.1 
and A -  = -0.55. Lee describes results for (in our notation) A = -0.58, -0.29,O and 
0.29. The first of these falls within our transit.ion category (ii) (§5.2), and the 
remainder belong to our resonant category (i). In  general, his numerical results 
conform with the description given here. For the last three values of A our analytical 
approximations for the solitary-wave amplitude (4.38) and the downstream depression 
(4.16) are a = 0.24, 0.37 and 0.54 and A+ = -0.23, -0.18 and -0.13 respectively. 
These compare with u = 0.20, 0.35 and 0.55 and A+ = -0.24, -0.18 and -0.12 
respectively ; the agreement is good. 

5.2. Case (ii): A'_ < A < A -  

This case describes a transition from the resonant case A -  < A < A +  to the 
subcritical non-resonant case (iii) (see 55.3). I n  the limit 7+co the solution becomes 
locally stationary in the forcing region, where, as in case (i), i t  is given by A,, with 
A, tending to A- upstream and to A+ downstream (A+ < 0 < A-) .  However, in 
contrast with case (i), the upstream mean level A- is matched to a modulated cnoidal 
wavetrain, given by the approximate expressions ( 4 . 4 4 ~ -  c ) .  Also, again in contrast 
with case (i), the downstream mean level A+ is adjoined directly to a stationary 
cnoidal wavetrain, given by ( 4 . 8 ~ - e )  with v = 0, d = A+ and modulus m = m,. This 
in turn is terminated with a modulated cnoidal wavetrain of the form (4.40u-c), where 
now the modulus m varies over the range 0 < m < m,. I n  the hydraulic approximation 
c + O  our analytic approximation obtained in $4 implies that A -  x -312G0)i and 
A: x - ( 12G0)2, while A + are given by (4.16). However, these approximate expressions 
for A +  become increasingly inaccurate as A --f A: owing to the failure of the hydraulic 
approximation to recognize the presence of the downstream stationary cnoidal 
wavetrain. For the same reason, the approximation for A: is not as good as that for 
A _ .  Instead, it is possible to  piece together the component parts of the solution using 
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FIQURE 8. The numerical solution for the forcing function ( 4 . 4 ~ )  with Go = 1 and 6 = 0.3: 
(u) A = - 1.7; ( b )  A = -2.5. 

the modulated cnoidal wavetrains of $4.4, the stationary cnoidal wavetrain and the 
stationary solution in the forcing region. This approach has been developed by one 
of us (Smyth 1986), but will not be presented here as it results in some very 
complicated expressions involving elliptic functions. I n  the opposite limit E-. 03, 

A -  x -;(G,KE-'); and dI_ x -3(G0Kc-1);, while A ,  are given by ( 4 . 3 0 ~ ) .  Again, 
however, these approximate expressions for A ,  become increasingly inaccurate as 
A + AL, while the approximation for A: is not as good as that for A -. 

Some typical numerical solutions are shown in figure 8 for the forcing function 
( 4 . 4 ~ )  with Go = 1, 6 = 0.3 and two values of d.  The case d = - 1.7 corresponds to 
d x d - . The replacement of the upstream solitary wavetrain by a modulated cnoidal 
wavetrain is clearly evident. However, the downstream solution consists entirely of 
the negative mean level A- matched to a modulated cnoidal wavetrain, although we 
note that, in contrast with the fully resonant case shown in figure 4, the leading wave 
in the wavetrain is almost stationary. This agrees with the results obtained in $4.4 
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FIQURE 9. The numerical solution for the forcing function (4.4a) with A = -4, Go = 1 and 
5 = 0.3. 

when A + A -  from above (see e.g. (4.42a, b ) ) .  The case A = -2.5 represents a value 
of A in the middle of the range. All the features described above are evident. In 
particular, in contrast with the case d = - 1.7,  we note that the upstream modulated 
cnoidal wavetrain is weaker, while the downstream stationary cnoidal wavetrain is 
well established. 

5.3. Case ( i i i ) :  A < A' 
This is the subcritical non-resonant case. A typical numerical solution is shown in 
figure 9 for the forcing function (4.4a), with A = -4, Go = 1 and 6 = 0.3. The most 
pronounced features are the locally stationary depression in the forcing region, the 
generation of a finite number of upstream solitary waves to compensate for the mass 
contained in the depression, and the downstream stationary cnoidal wavetrain. As 
A +  - 00 with Go fixed, the solution reduces to the classical lee-wave configuration 
(see e.g. McIntyre 1972; or Patoine & Warn 1982). The hydraulic approximation 
predicts the depression in the forcing region (see (4.19)) and a compensating upstream 
triangular wave of elevation; this, of course, is resolved by the presence of dispersion 
into a finite number of solitary waves. The hydraulic approximation fails to predict 
the presence of the downstream lee waves. However, these are the central feature of 
an amplitude expansion in powers of Go (Patoine & Warn 1982), which also shows 
that the stationary depression tends to an upstream mean level A- (> 0 ) ,  which is 
matched to an upstream modulated cnoidal wavetrain, just as in case (ii). Also the 
downstream stationary lee waves have a mean level A ,  (< 0) and are matched to a 
modulated cnoidal wavetrain. However, the mean levels A ,  are O(G: A-3)  and are 
insignificant compared with the scale of the stationary depression and the upstream 
solitary waves; they are not detectable in figure 9. We note here that much of the 
discussion in the literature on upstream influence has centred on the mean level A- 
and its adjoining wavetrain, whereas i t  is clear from figure 9 that the predominant 
upstream disturbances are the solitary waves which are formed to compensate for 
the mass contained in the stationary depression over the forcing region. 

5.4. Case ( i w ) :  A > A +  
This is the supercritical non-resonant case. A typical numerical solution is shown in 
figure 10 for the forcing function ( 4 . 4 ~ )  with d = 4, Go = 1 and 6 = 0.3. The most 
pronounced features are the locally stationary elevation over the forcing region, and 
a downstream modulated cnoidal wavetrain. The hydraulic approximation predicts 
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FIGURE 10. The numerical solution for the forcing function ( 4 . 4 ~ )  with A = 4, Go = 1 and 
5 = 0.3. 

the elevation in the forcing region (see (4.19)) and a compensating downstream 
triangular depression wave; this, of course, is resolved by dispersion into an 
oscillatory wavetrain. 

6. Discussion; numerical solutions for negative forcing 
Here we shall discuss the numerical solutions of (4.2a, b) obtained with the forcing 

functions (4.4a, b) with Go < 0. From our numerical results we have identified three 
regimes. 

6.1. Case (i): A*_ < d < A*, 
This is the resonant case; A$ are functions of Go and and satisfy the inequality 
A P < 0 < A *, . Some typical numerical solutions are shown in figure 1 1 for the forcing 
function ( 4 . 4 ~ )  with d = 0, Go = - 1 and 5 = 0.3 in figure 11 (a), or 5 = 2.0 in 11 (b). 
In both cases, solitary waves are sent upstream, and a rather confused oscillatory 
wavetrain is sent downstream. However, the two cases, representing respectively 
weak and strong dispersion, differ considerably in detail, particularly over the forcing 
region. 

Let us first consider the case of weak dispersion, shown in figure 11 (a). Here it is 
appropriate to use the hydraulic approximation of $4.1 as a guide to interpreting our 
numerical results. In  the hydraulic approximation the equations to be solved are 
(4.9a, b) or, in characteristic form, (4.10a-c), and the solution is given by (4.11). For 
A2 < - 12G0 there exists a critical value of Xi, Xid, where - 12G(Xi,) = dz; here we 
recall that Xi is the initial position of the Characteristic. All characteristics emanating 
from the -Xid < Xi < possess turning points, while all the remaining charac- 
teristics have no turning points. Thus shocks form over the forcing region, and, unlike 
the case of positive forcing, the effects of dispersion are significant in the forcing region 
as well as in the formation of waves upstream and downstream. Further, the solution 
does not settle down into a stationary state in the forcing region. For instance, with 
d = 0, in the hydraulic approximation a single stationary shock forms at X' = 0 with 
positive (negative) elevation in X' > 0 (< 0). However, from figure 11 (a) we see that 
the effect of dispersion on the region in X > 0 with positive elevation is to cause the 
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FIGURE 1 1 .  The numerical solution for the forcing function ( 4 . 4 ~ )  with A = 0, Go = - 1 : 
( a )  E = 0.3; ( b )  5 = 2.0. 

formation of a solitary-type wave which propagates upstream. If this solitary-type 
disturbance has insufficient mass then i t  decays to zero when i t  is free of the forcing 
region; examples of this process can be seen in figure 1 1  (a). However, if the 
disturbance obtains sufficient mass then a solitary wave will form and propagate 
upstream; one such wave can be seen in figure il(a). As each solitary-type 
disturbance forms and propagates upstream, simultaneously an oscillatory wavetrain 
is sent downstream. Finally, based on this analysis, we conjecture that as E+O, 
A*, x f ( - 12G0):, although, owing to the fact that  dispersion is always significant, 
these boundaries are not well defined. Malanotte-Rizzoli ( 1984) has described some 
numerical solutions of a forced KdV equation, which fall into this category. In  our 
terminology, the forcing function was Go sech4 EX with Go = - 1 and f [  = 0.14. 
Although her results were obtained with a non-zero initial condition, they are similar 
to  those obtained by us. 

Next we consider the case of strong dispersion shown in figure 1 1  ( b ) .  The solution 
now reaches a quasistationary state in the forcing region. Disturbances with positive 
mass form at  regular intervals and produce solitary waves which propagate upstream, 
and form a solitary wavetrain; this upstream behaviour is similar to the upstream 
behaviour for positive forcing described in 55.1. As each solitary wave forms, a 
corresponding wave is sent downstream. These waves travel faster than the modulated 
cnoidal wavetrain which terminates the downstream depression, and hence interact 
with it. 
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FIGURE 12. The numerical solution for the forcing function ( 4 . 4 ~ )  with A = -4, Go = - 1 
(a) E = 0.3; ( b )  5 = 2.0. 

6.2. Case (ii): A < A*_ 
This is the subcritical non-resonant case. Some typical numerical solutions are shown 
in figure 12 for the forcing function ( 4 . 4 ~ )  with A = -4, Go = - 1 and 6 = 0.3 in figure 
l2(a),  or 6 = 2.0 in figure 12(b), corresponding to weak and strong dispersion 
respectively. Let us first consider the case of weak dispersion. In  the hydraulic 
approximation of $4.1, a localized stationary solution with positive mass is formed 
over the forcing region and is given by (4.19). This is compensated for by an upstream 
triangular wave of depression, which is given by an expression similar to (4.20a, b )  ; 
this, of course, is resolved by dispersion into an oscillatory wavetrain. However, 
examination of figure 12(a) shows that due to the effects of dispersion the solution 
in the forcing region is not stationary, although it is primarily a disturbance with 
positive mass. There is also evidence in figure 12 (a)  of rather weak lee waves being 
formed downstream. As I A I increases, or I Go I decreases, the lee waves become more 
pronounced. 

The case of strong dispersion is shown in figure 12(b). The formation of a 
non-stationary disturbance with positive mass in the forcing region and a compensating 
upstream oscillatory wavetrain are again evident. However, the downstream lee-wave 
train is now the dominant feature. Patoine & Warn (1982) described some numerical 
solutions of (4.2a, b).  In our terminology, the forcing function was (4.4b) with 
Go = - 1, A = -2.45 and 5 = 0.78. Their results are similar to those shown in figure 
12 (b ) .  



458 R. H .  J .  Grimshaw and N .  Smyth 

FIGURE 13. The numerical solution for the forcing function ( 4 . 4 ~ )  with A = 3, Go = - 1 and 
6 = 0.3. 

6.3. Case (iii): A > A*, 
This is the supercritical non-resonant case. A typical numerical solution is shown in 
figure 13 for the forcing function ( 4 . 4 ~ )  with A = 3, Qo = - 1 and 6 = 0.3. Astationary 
depression is formed in the forcing region, and a compensating solitary wave is being 
swept downstream. In this case, these results can be predicted from the hydraulic 
approximation of $4.1, in which the stationary solution in the forcing region is given 
by (4.19) with a compensating downstream triangular wave of elevation; this, of 
course, is resolved by dispersion into a finite number of solitary waves. 

7. Conclusions 
In  totality, our numerical results show that the forced KdV equation ( 4 . 2 ~ )  

provides a useful model to describe the flow of a stratified fluid over topography for 
both the resonant and non-resonant cases, and for both subcritical and supercritical 
flow. Further, our supporting analysis in $4 demonstrates the utility of the hydraulic 
approximation in predicting the general nature of the flow field, particularly in the 
forcing region over the topography. One of the interesting features of our results is 
the appearance in many cases of significant upstream disturbances. These are either 
solitary waves when the localized forcing over the topography produces a positive 
disturbance upstream, or an oscillatory wavetrain when the disturbance has negative 
polarity. Here we recall that positive (negative) polarity occurs when the solitary 
waves of the free KdV equation have the same (opposite) polarity to the topographic 
forcing. It is noteworthy that these upstream disturbances are not the rather weak 
long wave motions calculated by Benjamin (1970), Keady (1971) or McIntyre (1972). 
Instead they are undoubtedly related to the strong upstream disturbances observed 
by Baines (1977, 1979, 1984). Downstream disturbances can also be categorized as 
either solitary waves or oscillatory wavetrains according to the polarity of the 
downstream disturbance produced by the localized forcing. For non-resonant sub- 
critical flow there will also be a stationary lee-wave field formed. The lee waves are 
the one feature that cannot be predicted from the hydraulic approximation. 
However, we note that even when lee waves are formed they do not necessarily 
constitute the dominant feature of the total flow field. Furthermore, in many cases, 
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the downstream disturbance contains no lee waves, and is not stationary. This 
suggests that caution should be used in interpreting data from experiments and 
observations as evidence of lee waves. It is useful in this context to consider how 
relevant the resonant cases are likely to be vis-ci-vis the non-resonant cases. Our 
numerical results show that the resonant band is defined by A -  < A < A +  (and also 
A'_ < A < A -  to some extent) for positive forcing, and A*_ < A < A*, for negative 
forcing. Our estimates for A ,  and A*, show that these scale with 6 for $ + O ,  or 
(Got-')! for E+m. In  general, the width of the resonant band increases with the 
magnitude of the topographic forcing, suggesting that in many applications the 
resonant theory presented here may be more appropriate than the traditional 
linearized theories. If, for simplicity, we restrict attention to the hydraulic limit, then 
we expect the resonant theory to hold when A < (12 I Go I )t. Evaluating this criterion 
in terms of the scaling (4.1) and the definition of A ( 3 . 1 ~ )  we find that it becomes 

where G ,  is related to the bottom topography ag(X) by (2.15b) and the coefficient 
p is defined by (3 .6b) .  It is pertinent to note here that, inter alia, the width of the 
resonant band is proportional to Iplf, and, by virtue of the scaling (4.1), the 
magnitude of the solution is proportional to Ipl. Hence we expect resonance to be 
important whenever lpl is not too small. This is certainly the case for waves on the 
free surface of a homogeneous fluid (see (7.6) below), and for stratified fluids in which 
P ( z )  (see (2.1)) varies significantly over the fluid depth. An extreme instance of this 
is the two-layer fluid for which P ( z )  is a &function; in this case p is given by ( 7 . 3 ~ )  
and is non-zero except under very special circumstances. On the other hand p is 0(/3) 
if W ( z )  is constant over the fluid depth, and is small for a Boussinesq fluid, for which 
/3+-0. In this case it would be necessary to include a cubic term in the forced KdV 
equation ( 3 . 6 ~ )  (see Gear & Grimshaw (1983) or Miles (1979) for a discussion of this 
for the free KdV equation). 

There have been numerous experiments and observations of the flow of a stratified 
fluid over topography. Of particular relevance to the theory presented here are the 
experiments by Baines (1977, 1979, 1984) and the observations by Farmer & Smith 
(1980) and Farmer & Denton (1985) of tidally generated flow over a sill. Farmer & 
Smith and Farmer & Denton record the results of a number of observations for 
different parameter settings, and, although the field situation is complicated by the 
time-dependence of the basic flow, their observations are generally consistent with 
the theoretical results obtained here. Particularly pertinent is the fact that they found 
internal hydraulic theory useful in categorizing their observations, and in describing 
the flow field directly over the topography. Baines (1977,1979) describes experiments 
of stratified flow over topography, with W(z) nearly constant. Although he observed 
significant upstream disturbances that were first-order in the obstacle height and 
propagated with the long-wave speed, we are unable to compare his observations 
directly with our theory, since the coefficient p was very small for the experimental 
situation. As we commented above, this necessitates the inclusion of a cubic term 
in the forced KdV equation ( 3 . 6 ~ ) .  However, Baines (1984) has given a comprehensive 
account of the flow of a two-layer fluid over topography based on a series of 
experiments and internal hydraulic theory. Most of his discussion relates to the flow 
field over the topography and the upstream disturbance, and, with due allowance 
for the effects of friction, his results are generally consistent with our theory. For a 
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two-layer fluid of total depth h,  lower-layer depth d and densities p1 and pz in the 
upper and lower layers respectively, we find that the modal function is 

h - z  
f o r d < z < h ,  

( 7 . 2 ~ )  

(7.2b) 

This result is obtained from (2.10a-c), where we put por = ( p 1 - p 2 ) & ( z - d )  and, for 
simplicity, assume that the upper boundary is rigid; the Boussinesq parameter 
/? = 2 ( p 2 - p l ) / ( p 2 + p l ) .  Next, evaluating p and h from (3.6b, c), we find that 

For the experiments described by Baines (1984) the topography had a long 
lengthscale, and so the criterion for the validity of our resonant theory is (7 .1) .  
Evaluating p from ( 7 . 3 ~ )  and G, from (2.15b), this becomes 

where 

(:- 1)' < I Ryl, 
2 @ l d + p 2 ( h - d ) } 2  
3 p 1 h d 2 ( h - d )  R = -  

(7.4a) 

(7.4b) 

Here go is the maximum height of the topography, which, in view of the experimental 
configuration, we have placed in the upper boundary. In  our terminology, the 
experiments were all for positive forcing, and most satisfied the criterion ( 7 . 4 ~ ) .  Hence 
they mostly correspond to our case (i), in which the main upstream effect is the 
solitary wavetrain (see figure 4).  Indeed, in many of his experiments Baines (1984) 
observed an upstream undular bore, which, apart from frictional effects, corresponds 
to our solitary wavetrain. Further, he found good quantitative agreement between 
the upstream elevation and the predictions of internal hydraulic theory. I n  the weakly 
nonlinear limit internal hydraulic theory will give the same expression for this 
upstream elevation as that  found by us in 34.1 (see (4.16)). Hence his experiments 
provide an indirect confirmation of the theory described here. 

Finally, we note that, although our main concern has been with stratified fluids, 
our results can be applied to the generation of gravity waves on the free surface of 
a homogeneous fluid. Indeed, for a homogeneous fluid 

z 
@ ( z )  = for 0 < z < h, (7.5a) 

c2 = h. (7.5b) 

Here we put the Boussinesq parameter p = 1 .  Evaluating p and A from (3.66, c), we 
find that 

(7 *6) 
3 

p = 2, h = ih2. 
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Thc counterpart to ( 7 . 3 ~ )  for the validity of the rcsonant theory is 

Recently Huang et al. (1982), in a towing tank experiment, observed the generation 
of upstream solitary waves for flows near criticality. I n  our terminology, the 
experiments were for positive forcing, and satisfied the criterion (7.7). Hence they 
correspond to our case (i), and the observations show a marked similarity with our 
figure 4. Wu & Wu (1982) investigated numerically some Boussinesq long-wave 
equations, and modelled the towed obstacle with a travelling pressure distribution. 
They obtained results generally consistent with ours, and with the experimental 
results of Huang et al. (1982). More recently, Lee (1985) has derived a forced KdV 
equation analogous to  (4.2a, b) to describe flow over bottom topography, and has 
compared numerical solutions of this equation with his experimental results. With 
due allowance for the effects of friction, the agreement is very good, the only 
exception being phase differences in the downstream lee-wave field. We have 
discussed his numerical solutions in $5 ,  and recall that they are consistent with ours. 

One of us (N. S.) acknowledges support from the Australian Research Grants 
Scheme under Grant 83115835. 

Appendix. Extension of the analysis for deep fluids 
The derivation of the amplitude equation ( 3 . 6 ~ )  requires the implicit assumption 

that the channel depth h is 0(1) with respect to the small parameter E (i.e. the 
dimensional depth scales with hl).  I n  this section we replace this with the hypothesis 
that the channel depth scales with E - ~ ,  and we put h = He-l, where H is O(1) with 
respect to e.  At the same time we shall assume that in the deep fluid region, where 
z scales with s-l, the density stratification is weak, and specifically the BrunGVaisala 
frequency N ( z ) + e ( N O )  as z+m.  It then follows from (2.1) that 

po = P o ( z )  exp ( - E’N: 4, (A l a )  

where p”,(z)+p, as z + m .  (A 1 b )  

2 = €2. (A 2) 

(A 3) 

I n  the deep fluid region the vertical variable z is replaced by 2, where 

We also replace q, u with Q, U ,  where 

q = E&(X,  T ,  Z ) ,  u = E U ( X ,  T ,  2). 

Then, to leading order in E ,  in the deep fluid region the governing equations (2.2u-d) 

D become 

DT ’- (A 4a) U,+-{ - 0, 

where po(Z) = pm exp ( - E N :  Z ) .  (A 4 4  
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Here we recall that D/DT is defined by (2.8e) and the error terms are relatively O ( e ) .  
Eliminating U ,  Q and omitting terms that are relatively O ( E ) ,  we find that 

The boundary conditions (2.6u, b )  reduce to, again omitting O ( E )  error terms, 

g = O  a t Z = H .  (A 6) 

Because of the large horizontal and vertical lengthscales in the deep fluid region, the 
upper boundary is effectively rigid, to leading order in e.  The solution of (A 5 )  and 
(A 6) is readily obtained from Fourier transforms in X and T.  This solution is then 
matched with the corresponding solution in the lower fluid region, where z is O(1). 

Consider first the non-resonant case. In the lower fluid region we again use the 
expansion (2.7), where go, qo and uo satisfy ( 2 . 8 ~ 4 )  and the bottom boundary 
condition ( 2 . 9 ~ ) .  The other boundary condition (2.9b) is now replaced by an 
appropriate matching condition. In the deep fluid region we put 

5 = aco(X,  T ,  2) + . . . , 
Q = aQ,(X,T,Z)+ ..., 
u = a U 0 ( X ,  T, 2) + .. . , 

where co satisfies (A 5 )  and (A 6), and Qo, Uo are then found from (A 4u-c). Matching 

(A 8 a )  
with (2.7) shows that 

qo, uo+O as z+ co, 

C ( X ,  T ;  z+ 0 0 )  = C0(X, T ,  Z+O). (A 8 b )  

Equation (A 8a)  replaces the boundary condition (2.9b), and (A 8 b )  provides a lower 
boundary condition for (A 5 ) .  In the lower fluid region the solution is again obtained 
from the normal-mode expansion (2.12u-c) where (A 8a)  now requires that in the 
eigenvalue problem (2.10u-c) for $,(z) the boundary condition ( 2 . 1 0 ~ )  is replaced by 

$,,+O asz+oo. (A 9) 

The orthogonality condition is again satisfied. The remaining development in $2 is 
unchanged and (2.14~-c) hold as before, with the solution ( 2 . 1 6 ~ )  or (2.17). In this 
non-resonant case the deep fluid region is passive, to leading order in e. Once A,(X,  T )  
has been found, co(X,  T ;  z+ 00)  is calculated from (2.12u), and the solution in the deep 
fluid region is obtained by solving (A 5 )  with the boundary conditions (A 6) and 
(A 8a).  

In the resonant case we again use the expansion ( 3 . 1 ~ )  in the lower fluid region, 
where now the mode $ n ( ~ )  satisfies the boundary condition (A 9).  In the deep fluid 
region we put 

(A 10) 

(A l l a )  

where lo satisfies (A 5) and (A 6), and U,, Q0 are then found from (A 4a-c). Since now 
D/DT x c,a/aX, we find that (A 5) reduces to 

Qo = ~o(z)  C o z ,  uo = -cn Coz. (A l l b )  

I 6 = a4c0(X, 2; 7 )  + 
Q = a4&,(X,2;7)+1%Q~+..., 

+ . . . , 

u = a4uo(X,2;7)+aul+ ..., 

c x o x x  + d z z )  + c o  = 0, 
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The balance between nonlinearity and dispersion now requires that E = at. Matching 
with ( 3 . 1 ~ )  shows that 

Co(x,z+O;~) = A(X,7)4,(z+ a), (A 12a) 

ql+pmckCoz(X,Z= 0 ; ~ )  asz+co, (A 12b) 

U ~ + - C ~ [ ~ ~ ( X , Z  = 0 ; ~ )  asz+co. (A 12c) 

Equation (A 12a) provides a lower boundary condition for (A l l a ) ,  while the upper 
boundary condition is (A 6). The solution is 

1 sinhR(H-2) 
exp (ikX) P ( A )  dk, (A 13a) " = 4n(co)% J-, sinhRH 

a, 

where P ( A )  = j-m A ( X ,  7 )  exp (-ikX) dX, (A 13b) 

(A 13c) 

Here R is defined so that if R is real then R > 0, while if R is pure imaginary, 
(Im R) k > 0. As H +  co the terms involving H in (A 13a) are replaced by exp (-RZ), 
where the definition of R ensures that the solution is either exponentially decaying 
or is an outgoing wave. 

In the lower fluid region Cl, q, and u1 again satisfy (3.2a-d) with the omission of 
the term A,, in ( 3 . 2 ~ ) .  However, the upper boundary condition (3.2e) is now 
replaced by (A 12b); (A 12c) is then automatically satisfied (see e.g. (3.2b)). The 
solution is again given by (3.3a), where A,, again satisfies ( 3 . 4 ~ ) .  However, now the 
term Axxx in M,, (see (3.4b)) is omitted and replaced by q lX$ , ( z )  as z+m. Here 
q1 is obtained from (A 12b) and (A 13a). Proceeding as in $3, we find that the 
amplitude equation that replaces ( 3 . 6 ~ )  is 

1 

cn 

B(A) = - Jco R coth RH exp (ikX)9(A) dk, 

21, ;c = pm c; $~(co). 

(A 14a) 

(A 14b) 

(A 14c) 

Finally, matching with the inner expansion proceeds as described in 3 3 ; in particular, 
the initial condition is again (3.7a). 

Equation (A 14a) can be recognized as a forced evolution equation of KdV type. 
In  the limits H - t  co and No + O  it  reduces to a forced version of the equation derived 
by Benjamin (1967) and Davis & Acrivos (1967) to describe internal solitary waves 
in deep fluids. Using the same scaling as employed in $4, with the dispersive coefficient 
h replaced by A, we find that (A 14a) and ( 3 . 7 ~ )  become 

- - ( A , + d A , ) + ~ A A , + A B ( A , ) + ~ , ( X )  = 0, 

1 
where 

27c -a, 

-A,**-d*A% + 6A*A% +B(A$*) + a%(X)  = 0, 

A*(X,  0) = 0. 

(A 15a) 

(A 15b) 

With the exception of the dispersive term, (A 15a, b) are identical to (4.2a, b). In 
particular, the conclusions derived from the hydraulic approximation in $4.1 may 
be applied here as well. Further, we expect the effects of dispersion in (A 15a) to be 
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similar to its role in (4.2a),  which we have discussed in $4. Thus, although we have 
not obtained numerical solutions of (A 15a, b ) ,  we anticipate that the solutions will 
possess the same qualitative features obtained for (4.2a, b ) ,  and described in $55 
and 6. 
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